- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的中位数
- 由频率分布直方图估计中位数
- + 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是
A.中位数 | B.平均数 |
C.方差 | D.极差 |
以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()


A.2,5 | B.5,5 | C.5,8 | D.8,8 |
某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:
):男生成绩在175
以上(包括175
)定义为“合格”,成绩在175
以下(不包括175
)定义为“不合格”.女生成绩在165
以上(包括165
)定义为“合格”,成绩在165
以下(不包括165
)定义为“不合格”.

(1)求五年一班的女生立定跳远成绩的中位数;
(2)在五年一班的男生中任意选取3人,求至少有2人的成绩是合格的概率;
(3)若从五年一班成绩“合格”的学生中选取2人参加复试,用
表示其中男生的人数,写出
的分布列,并求
的数学期望.










(1)求五年一班的女生立定跳远成绩的中位数;
(2)在五年一班的男生中任意选取3人,求至少有2人的成绩是合格的概率;
(3)若从五年一班成绩“合格”的学生中选取2人参加复试,用



某中学高三年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩的茎叶图如图所示,其中甲班学生成绩的平均分是86,乙班学生成绩的中位数是83,则
的值为()



A.9 | B.10 | C.11 | D.13 |
某中学学校对高三年级文科学生进行了一次自主学习习惯的自评满意度的调查,按系统抽样方法得到了一个自评满意度(百分制,单位:分)的样本,如图分别是该样本数据的茎叶图和频率分布直方图(都有部分缺失).

(1)完善频率分布直方图(需写出计算过程);
(2)分别根据茎叶图和频率分布直方图求出样本数据的中位数m1和m2,并指出选用哪一个数据来估计总体的中位数更合理(需要叙述理由).

(1)完善频率分布直方图(需写出计算过程);
(2)分别根据茎叶图和频率分布直方图求出样本数据的中位数m1和m2,并指出选用哪一个数据来估计总体的中位数更合理(需要叙述理由).
从甲、乙两种树苗中各抽测了
株树苗的高度,其茎叶图如图所示.根据茎叶图,下列描述正确的是( )



A.甲种树苗的高度的中位数大于乙种树苗高度的中位数,且甲种树苗比乙种树苗长得整齐 |
B.甲种树苗的高度的中位数大于乙种树苗高度的中位数,但乙种树苗比甲种树苗长得整齐 |
C.乙种树苗的高度的中位数大于甲种树苗高度的中位数,且乙种树苗比甲种树苗长得整齐 |
D.乙种树苗的高度的中位数大于甲种树苗高度的中位数,但甲种树苗比乙种树苗长得整齐 |
从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图所示.根据茎叶图,下列描述正确的是( )


A.甲种树苗的高度的中位数大于乙种树苗高度的中位数,且甲种树苗比乙种树苗长得整齐 |
B.甲种树苗高度的中位数大于乙种树苗高度的中位数,但乙种树苗比甲种树苗长得整齐 |
C.乙种树苗的高度的中位数大于甲种树苗高度的中位数,且乙种树苗比甲种树苗长得整齐 |
D.乙种树苗的高度的中位数大于甲种树苗高度的中位数,但甲种树苗比乙种树苗长得整齐 |
2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现从这两校参加考试的学生数学成绩在100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如下的茎叶图.

(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有90
的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关;
(3)若从这40名学生中选取数学成绩在
的学生,用分层抽样的方式从甲乙两校中抽取5人,再从这5人中随机抽取3人分析其失分原因,求这3人中恰有2人是乙校学生的概率.
参考公式与临界值表:
,其中
.

(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有90

(3)若从这40名学生中选取数学成绩在

参考公式与临界值表:


![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
某中学高二年级的甲、乙两个班各选出5名学生参加数学竞赛,在竞赛中他们取得成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83分,乙班5名学生成绩的中位数是86.若从成绩在85分及以上的学生中随机抽2名,则至少有1名学生来自甲班的概率为__________ .

某企业为了解某产品的销售情况,选择某个电商平台对该产品销售情况作调查.统计了一年内的月销售数量(单位:万件),得到该电商平台月销售数量的茎叶图.

(1)求该电商平台在这一年内月销售该产品数量的中位数和平均数;
(2)该企业与电商签订销售合同时规定:如果电商平台当月的销售件数不低于40万件,当月奖励该电商平台10万元;当月低于40万件没有奖励,用该样本估计总体,从电商平台一个年度内高于该年月销售平均数的月份中任取两个月,求这两个月企业发给电商平台的奖金为20万元的概率.

(1)求该电商平台在这一年内月销售该产品数量的中位数和平均数;
(2)该企业与电商签订销售合同时规定:如果电商平台当月的销售件数不低于40万件,当月奖励该电商平台10万元;当月低于40万件没有奖励,用该样本估计总体,从电商平台一个年度内高于该年月销售平均数的月份中任取两个月,求这两个月企业发给电商平台的奖金为20万元的概率.