- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 分层抽样的特征及适用条件
- + 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某移动支付公司随机抽取了100名移动支付用户进行调查,得到如下数据:
(1)在每周使用移动支付超过3次的样本中,按性别用分层抽样随机抽取5名用户.
①求抽取的5名用户中男、女用户各多少人;
②从这5名用户中随机抽取2名用户,求抽取的2名用户均为男用户的概率.
(2)如果认为每周使用移动支付次数超过3次的用户“喜欢使用移动支付”,能否在犯错误概率不超过0.05的前提下,认为“喜欢使用移动支付”与性别有关?
附表及公式:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用移动支付超过3次的样本中,按性别用分层抽样随机抽取5名用户.
①求抽取的5名用户中男、女用户各多少人;
②从这5名用户中随机抽取2名用户,求抽取的2名用户均为男用户的概率.
(2)如果认为每周使用移动支付次数超过3次的用户“喜欢使用移动支付”,能否在犯错误概率不超过0.05的前提下,认为“喜欢使用移动支付”与性别有关?
附表及公式:

![]() | 0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
已知某市
社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.

某校高三2班有48名学生进行了一场投篮测试,其中男生28人,女生20人.为了了解其投篮成绩,甲、乙两人分别对全班的学生进行编号(1~48号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:

(Ⅰ)从甲抽取的样本数据中任取两名同学的投篮成绩,记“抽到投篮成绩优秀”的人数为X,求X的分布列和数学期望;
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?

(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
(参考公式:
,其中
)

(Ⅰ)从甲抽取的样本数据中任取两名同学的投篮成绩,记“抽到投篮成绩优秀”的人数为X,求X的分布列和数学期望;
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?

(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(参考公式:


“日行一万步,健康你一生”的养生观念已经深入人心,由于研究性学习的需要,某大学生收集了手机“微信运动”团队中特定甲、乙两个班级
名成员一天行走的步数,然后采用分层抽样的方法按照
,
,
,
分层抽取了20名成员的步数,并绘制了如下尚不完整的茎叶图(单位:千步):

已知甲、乙两班行走步数的平均值都是44千步.
(1)求
的值;
(2)(ⅰ)若
,求甲、乙两个班级100名成员中行走步数在
,
,
,
各层的人数;
(ⅱ)若估计该团队中一天行走步数少于40千步的人数比处于
千步的人数少12人,求
的值.






已知甲、乙两班行走步数的平均值都是44千步.
(1)求

(2)(ⅰ)若





(ⅱ)若估计该团队中一天行走步数少于40千步的人数比处于


2017年被称为“新高考元年”,随着上海、浙江两地顺利实施“语数外+3”新高考方案,新一轮的高考改革还将继续在全国推进.辽宁地区也将于2020年开启新高考模式,今年秋季入学 的高一新生将面临从物理、化学、生物、政治、历史、地理等6科中任选三科(共20种选法)作为 自己将来高考“语数外+3 ”新高考方案中的“3”.某地区为了顺利迎接新高考改革,在某学校理科班的200名学生中进行了“学生模拟选科数据”调查,每个学生只能从表格中的20种课程 组合选择一种学习.模拟选课数据统计如下表:
为了解学生成绩与学生模拟选课情之间的关系,用分层抽样的方法从这200名学生中抽取40人的样本进行分析.
(1)样本中选择组合12号“化生历”的有多少人?样本中选择学习物理的有多少人?
(2)从样本选择学习地理且学习物理的学生中随机抽取3人,求这3人中至少有1人还要学习生物的概率;
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
组合学科 | 物化生 | 物化政 | 物化历 | 物化地 | 物生政 | 物生历 | 物生地 |
人数 | 20人 | 5人 | 10人 | 10人 | 10人 | 15人 | 10人 |
序号 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
组合学科 | 物政历 | 物政地 | 物历地 | 化生政 | 化生历 | 化生地 | 化政历 |
人数 | 5人 | 0人 | 5人 | ... | 40人 | ... | ... |
序号 | 15 | 16 | 17 | 18 | 19 | 20 | |
组合学科 | 化政地 | 化历地 | 生政历 | 生政地 | 生历地 | 政历地 | 总计 |
人数 | ... | ... | ... | ... | ... | ... | 200人 |
为了解学生成绩与学生模拟选课情之间的关系,用分层抽样的方法从这200名学生中抽取40人的样本进行分析.
(1)样本中选择组合12号“化生历”的有多少人?样本中选择学习物理的有多少人?
(2)从样本选择学习地理且学习物理的学生中随机抽取3人,求这3人中至少有1人还要学习生物的概率;
2016年1月1日我国全面放开二胎政策实施后,某大学的一个学生社团组织了一项关于生育二孩意愿的调查活动.已知该大学所在城区符合二孩政策的已婚女性中,30岁以下的有2400人,30岁至40岁的有3600人,40岁及以上的有6000人.为了解不同年龄层的女性对生育二孩的意愿是否存在显著差异,该社团用分层抽样的方法从中抽取了一个容量为
的样本进行调查,已知从40岁及以上的女性中抽取人数为60人,则
__________ .


某高中共有学生2800人,其中高一年级960人,高三年级900人,现采用分层抽样的方法,抽取140人进行体育达标检测,则抽取高二年级学生人数为__________ .
以“你我中国梦,全民建小康”为主题“社会主义核心价值观”为主线,为了解
、
两个地区的观众对2018年韩国平昌冬奥会准备工作的满意程度,对
、
地区的
名观众进行统计,统计结果如下:
在被调查的全体观众中随机抽取
名“非常满意”的人是
地区的概率为
,且
.
(1)现从
名观众中用分层抽样的方法抽取
名进行问卷调查,则应抽取“满意”的
、
地区的人数各是多少?
(2)在(1)抽取的“满意”的观众中,随机选出
人进行座谈,求至少有两名是
地区观众的概率?
(3)完成上述表格,并根据表格判断是否有
的把握认为观众的满意程度与所在地区有关系?
附:
,





| 非常满意 | 满意 | 合计 |
![]() | ![]() | ![]() | |
![]() | ![]() | ![]() | |
合计 | | | |
在被调查的全体观众中随机抽取




(1)现从




(2)在(1)抽取的“满意”的观众中,随机选出


(3)完成上述表格,并根据表格判断是否有

附:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
,

某机构对某镇的学生的身体素质状况按年级段进行分层抽样调查,得到了如下表所示的数据,则
__________ .

年级段 | 小学 | 初中 | 高中 |
总人数 | 800 | ![]() | ![]() |
样本中人数 | 16 | 15 | ![]() |