- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了
人,得到如下的统计表和频率分布直方图.
(1)写出其中的
、
、
及
和
的值;
(2)若从第1,2,3组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求这2人都是第3组的概率

(1)写出其中的





(2)若从第1,2,3组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求这2人都是第3组的概率
某校有高级教师90人,一级教师120人,二级教师170人,现按职称用分层抽样的方法抽取38人参加一项调查,则抽取的一级教师人数为( )
A.10 | B.12 | C.16 | D.18 |
某高级中学共有学生1500人,各年级学生人数如下表,现用分层抽样的方法在全校抽取45名学生,则在高一、高二、高三年级抽取的学生人数分别为( )
| 高一 | 高二 | 高三 |
人数 | 600 | 500 | 400 |
A.12,18,15 | B.18,12,15 | C.18,15,12 | D.15,15,15 |
总体由编号为
的
各个体组成,利用随机数表(以下摘取了随机数表中第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为


A.![]() | B.![]() | C.![]() | D.![]() |
双流中学校运动会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:
),身高在175
以上(包括175
)定义为“高个子”,身高在175
以 下(不包括175
)定义为“非高个子”.

(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率?
(2)若从身高180
以上(包括180
)的志愿者中选出男、女各一人,求这两人身高相差5
以上的概率.






(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率?
(2)若从身高180



长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:
(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.
(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间
内,则需要花费40分钟进行剪辑,若点击量在区间
内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间
的分布列与数学期望.
点击量 | ![]() | ![]() | ![]() |
节数 | 6 | 18 | 12 |
(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.
(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间



长春市的“名师云课”活动自开展以来获得广大家长和学子的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给广大学子,现对某一时段云课的点击量进行统计:
(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.
(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间
内,则需要花费40分钟进行剪辑,若点击量在区间
内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中任意取出2节课进行剪辑,求剪辑时间为40分钟的概率.
点击量 | ![]() | ![]() | ![]() |
节数 | 6 | 18 | 12 |
(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.
(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间


某书法社团有男生30名,妇生20名,从中抽取一个5人的样本,恰好抽到了2名男生和3名女生。①该抽样一定不是系统抽样,②该抽样可能是随机抽样,③该抽样不可能是分层抽样,④男生被抽到的概率大于女生被抽到的概率,其中正确的是_________。
某学校共有教师300人,其中高级职称30人,中级职称180人,初级职称90人,现用分层抽样方法抽取一个容量为60的样本,则高级职称中抽取的人数为( )
A.10 | B.6 | C.8 | D.4 |
为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中,从男生中随机抽取了70人,从女生中随机抽取了50人,男生中喜欢数学课程的占
,女生中喜欢数学课程的占
,得到如下列联表.
(1)请将列联表补充完整;试判断能否有90%的把握认为喜欢数学课程与否与性别有关;
(2)从不喜欢数学课程的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,求抽取的学生中至少有1名是女生的概率..
附:
,其中
.


| 喜欢数学课程 | 不喜欢数学课程 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | |
(1)请将列联表补充完整;试判断能否有90%的把握认为喜欢数学课程与否与性别有关;
(2)从不喜欢数学课程的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,求抽取的学生中至少有1名是女生的概率..
附:


![]() | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |