- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某班级有50名学生,现用系统抽样的方法从这50名学生中抽出10名学生,将这50名学生随机编号为1~50号,并按编号顺序平均分成10组(1~5号,6~10号,…,46~50号),若在第三组抽到的编号是13,则在第七组抽到的编号是( )
A.23 | B.33 | C.43 | D.53 |
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
| 文艺节目 | 新闻节目 | 总计 |
20至40岁 | 40 | 18 | 58 |
大于40岁 | 15 | 27 | 42 |
总计 | 55 | 45 | 100 |
(1)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(2)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.
某大学中文系有学生5200人,其中一年级学生2000人、二年级学生1600人、三年级学生1200人、四年级学生400人,要用分层抽样的方法从该系中抽取一个容量为260的样本,则应抽三年级的学生( )
A.100人 | B.60人 |
C.80人 | D.20人 |
某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第一组中抽得号码为3的学生,则在第十组中抽得学生号码为( )
A.50 | B.49 | C.48 | D.47 |
在样本方差的计算公式s2=
[(x1-20)2+(x2-20)2+…+(x10-20)2]中,数字10和20分别表示样本的( )

A.容量,方差 |
B.平均数,容量 |
C.容量,平均数 |
D.标准差,平均数 |
某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为______ .
一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()
A.12,24,15,9 | B.9,12,12,7 | C.8,15,12,5 | D.8,16,10,6 |
某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核.
(Ⅰ)求从甲、乙两组各抽取的人数;
(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;
(Ⅲ)求抽取的4名工人中恰有2名男工人的概率.
(2013春•徐州期末)某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一抽取的学生人数为 名.