- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95.
(1)若规定85分(包括85分)以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
①用变量
与
与
的相关系数说明物理与数学、化学与数学的相关程度;
②求
与
与
的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.
参考公式:相关系数
,
回归直线方程是:
,其中
,
参考数据:
,
,
,
.
(1)若规定85分(包括85分)以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数![]() | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数![]() | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化学分数![]() | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用变量



②求



参考公式:相关系数

回归直线方程是:


参考数据:




共享单车的出现方便了人们的出行,深受市民的喜爱.为调查某校大学生对共享单车的使用情况,从该校8000名学生随机抽取了100位同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)频率分布直方图.

(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生人数;
(2)根据频率分布直方图求该校大学生每周使用共享单车的平均时间.
(3)
从抽取的100个样本中,用分层抽样的方法抽取使用共享单车时间超过6小时同学5人,再从这5人中任选2人,求这2人使用共享单车时间都不超过8小时的概率.

(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生人数;
(2)根据频率分布直方图求该校大学生每周使用共享单车的平均时间.
(3)

为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了
位老年人,结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有
的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中。需要志愿帮助的老年人的比例?说明理由.
参考公式:

![]() | 男 | 女 |
需要 | ![]() | ![]() |
不需要 | ![]() | ![]() |
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有

(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中。需要志愿帮助的老年人的比例?说明理由.
参考公式:

![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
某单位员工按年龄分为
三组,其人数之比为
,现用分层抽样的方法从总体中抽取一个容量为
的样本,若
组中甲、乙二人均被抽到的概率是
,则该单位员工总数为______________.





将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,若从中抽取一个容量为50的样本,按照系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第3个号码为__________.
某公司为对本公司的
名员工的身体状况进行调查,先将员工随机编号为
,采用系统抽样的方法(等间距地抽取,每段抽取一个个体)将抽取的一个样本.已知抽取的员工中最小的两个编号为
,那么抽取的员工中,最大的编号应该是( )



A.![]() | B.![]() | C.![]() | D.![]() |
一支田径队员有男运动员
人,女运动员
人,若采用分层抽样的方法在全体运动员中抽出
人进行体质测试,则抽到进行体质测试的男运动员的人数为______.



某地政府为了对房地产市场进行调控决策,统计部门对外来人口和当地人口进行了买房的心理预期调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表(不全):

已知样本中外来人口数与当地人口数之比为3:8.
(1)补全上述列联表;
(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,用
表示这3人指标之和,求
的分布列和数学期望.

已知样本中外来人口数与当地人口数之比为3:8.
(1)补全上述列联表;
(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,用


高三某班有学生36人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、23号、32号学生在样本中,则样本中还有一个学生的编号为( )
A.13 | B.14 | C.18 | D.26 |
一个学校高一、高二、高三的学生人数之比为
,若用分层抽样法抽取容量为200的样本,则应从高三学生中抽取的人数是( )

A.40 | B.60 | C.80 | D.100 |