- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一批灯泡
只,其中
、
、
的数目之比是
,现用分层抽样的方法产生一个容量为
的样本,则三种灯泡依次抽取的个数为( )






A.20,15,5 | B.4,3,1 |
C.16,12,4 | D.8,6,2 |
现要完成下列3项抽样调查:①从20罐奶粉中抽取4罐进行食品安全卫生检查;②从某社区100户高收入家庭,270户中等收入家庭,80户低收入家庭中选出45户进行消费水平调查;③某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.较为合理的抽样方法是( )
A.①系统抽样;②简单随机抽样;③分层抽样 |
B.①简单随机抽样;②分层抽样;③系统抽样 |
C.①分层抽样;②系统抽样;③简单随机抽样 |
D.①简单随机抽样;②系统抽样;③分层抽样 |
某大学共有本科生
人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为
的样本,则应抽取三年级的学生人数为( )


A.![]() | B.![]() | C.![]() | D.![]() |
互联网
时代的今天,移动互联快速发展,智能手机
技术不断成熟,价格却不断下降,成为了生活中必不可少的工具
中学生是对新事物和新潮流反应最快的一个群体之一
逐渐地,越来越多的中学生开始在学校里使用手机
手机特别是智能手机在让我们的生活更便捷的同时会带来些问题,同学们为了解手机在中学生中的使用情况,对本校高二年级100名同学使用手机的情况进行调查
针对调查中获得的“每天平均使用手机进行娱乐活动的时间”进行分组整理得到如图4的饼图、
注:图中
2,
单位:小时
代表分组为
i的情况

求饼图中a的值;
假设同一组中的每个数据可用给定区间的中点值代替,试估计样本中的100名学生每天平均使用手机的平均时间在第几组?
只需写出结论
从该校随机选取一名同学,能否根据题目中所给信息估计出这名学生每天平均使用手机进行娱乐活动小于
小时的概率,若能,请算出这个概率;若不能,请说明理由



















某公司生产
、
、
三种不同型号的轿车,产量之比依次为
,为了检验该公司的产品质量,用分层抽样的方法抽取一个容量为
的样本,样本中
种型号的轿车比
种型号的轿车少8辆,那么
.









某中学初一、初二、初三的学生人数分别为500,600,700,现用分层抽样的方法从这三个年级中选取18人参加学校的演讲比赛,则应选取的初二年级学生人数为( )
A.5 | B.6 | C.7 | D.8 |
某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距样本,将全体会员随机按
编号,并按编号顺序平均分为40组(
号,
号,…,
号),若第1组抽出的号码为3,则第6组抽出的号码是______.




为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

(1)求图中
的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.

(1)求图中

(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.
假设有一个专养草鱼的池塘,现要估计池塘内草鱼的数量.第一步,从池塘内打捞一批草鱼,做上标记,然后将其放回池塘,第二步,再次打捞一批草鱼,根据其中做标记的草鱼数量估计整个池塘中草鱼的数量.假设第一次打捞的草鱼有50尾,第二次打捞的草鱼总数为50尾,其中有标记的为7尾,试估计整个池塘中草鱼的数量大约为( )
A.250 | B.350 | C.450 | D.550 |