- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知( )


A.甲运动员的成绩好于乙运动员 |
B.乙运动员的成绩好于甲运动员 |
C.甲、乙两名运动员的成绩没有明显的差异 |
D.甲运动员的最低得分为0分 |
为了了解上、下班时期的交通情况,某市抽取了12辆机动车行驶的时速,得到了如下数据 (单位:km/h).
上班时期:30 33 18 27 32 40 26 28 21 28 35 20
下班时期:27 19 32 29 36 29 30 22 25 16 17 30
用茎叶图表示这些数据,并分别估计出该市上、下班时期机动车行驶的平均时速.
上班时期:30 33 18 27 32 40 26 28 21 28 35 20
下班时期:27 19 32 29 36 29 30 22 25 16 17 30
用茎叶图表示这些数据,并分别估计出该市上、下班时期机动车行驶的平均时速.
某次“讲文明、树新风”答题竞赛中,20名选手答对的题目数分别如下:30,26,23,21,18,27,28,26,23,30,26,28,27,24,21,19,27,28,26,29.作出这组数的茎叶图.
某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:

(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.

(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.
某中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲、乙两位同学的20次成绩如茎叶图所示:


(1)根据茎叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;
(2)根据茎叶图比较甲、乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可).


(1)根据茎叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;
(2)根据茎叶图比较甲、乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可).
某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生称其体重(单位:kg),将所得数据整理后画出了频率分布直方图如图所示,体重在
内适合跑步训练,体重在
内适合跳远训练,体重在
内适合投掷训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的人数之比为( )





A.4:3:1 | B.5:3:1 |
C.5:3:2 | D.3:2:1 |
某学校为了了解高中学生用手机上网的时间,随机抽查了若干位学生进行调查,收集到的日平均上网时间 (单位:h)都在区间
内,且频率分布直方图如图所示.分别估计这所学校学生中,日平均上网时间不到1h和超过了2h的学生所占的百分比.

