- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知甲组数据:156,
,165,174,162,乙组数据:159,178,
,161,167,其中
,
.若这两组数据的中位数相等,平均数也相等,则
( )





A.8 | B.10 | C.11 | D.12 |
交通部门对某路段公路上行驶的汽车速度实施监控,从速度不小于
的汽车中抽取200辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,则时速在
以上的汽车有________辆.



某老师是省级课题组的成员,主要研究课堂教学目标达成度,为方便研究,从实验班中随机抽取30次的随堂测试成绩进行数据分析.已知学生甲的30次随堂测试成绩如下(满分为100分):

(1)把学生甲的成绩按
,
,
,
,
,
分成6组,列出频率分布表,并画出频率分布直方图:
(2)为更好的分析学生甲存在的问题,从随堂测试成绩50分以下(不包括50分)的试卷中随机抽取3份进行分析,求恰有2份成绩在
内的概率.

(1)把学生甲的成绩按






(2)为更好的分析学生甲存在的问题,从随堂测试成绩50分以下(不包括50分)的试卷中随机抽取3份进行分析,求恰有2份成绩在

有n名学生,在一次数学测试后,老师将他们的分数(得分取正整数,满分为100分),按照
,
,
,
,
的分组作出频率分布直方图(如图1),并作出样本分数的茎叶图(如图2)(图中仅列出了得分在
,
的数据).

(1)求样本容量n和频率分布直方图中x、y的值;
(2)分数在
的学生中,男生有2人,现从该组抽取三人“座谈”,求至少有两名女生的概率.








(1)求样本容量n和频率分布直方图中x、y的值;
(2)分数在

《复仇者联盟4:终局之战》是安东尼·罗素和乔·罗素执导的美国科幻电影,改编自美国漫威漫画,自2019年4月24日上映以来票房火爆.某电影院为了解在该影院观看《复仇者联盟4》的观众的年龄构成情况,随机抽取了100名观众的年龄,并分成
,
,
,
,
,
,
七组,得到如图所示的频率分布直方图.

(1)求这100名观众年龄的平均数(同一组数据用该区间的中点值作代表)、中位数;
(2)该电影院拟采用抽奖活动来增加趣味性,观众可以选择是否参与抽奖活动(不参与抽奖活动按原价购票),活动方案如下:每张电影票价格提高10元,同时购买这样电影票的每位观众可获得3次抽奖机会,中奖1次则奖励现金
元,中奖2次则奖励现金
元,中奖三次则奖励现金
元,其中
且
,已知观众每次中奖的概率均为
.
①以某观众三次抽奖所获得的奖金总额的数学期望为评判依据,若要使抽奖方案对电影院有利,则
最高可定为多少;
②据某时段内的统计,当
时该电影院有600名观众选择参加抽奖活动,并且
每增加1元,则参加抽奖活动的观众增加100人.设该时间段内观影的总人数不变,抽奖活动给电影院带来的利润的期望为
,求
的最大值.








(1)求这100名观众年龄的平均数(同一组数据用该区间的中点值作代表)、中位数;
(2)该电影院拟采用抽奖活动来增加趣味性,观众可以选择是否参与抽奖活动(不参与抽奖活动按原价购票),活动方案如下:每张电影票价格提高10元,同时购买这样电影票的每位观众可获得3次抽奖机会,中奖1次则奖励现金






①以某观众三次抽奖所获得的奖金总额的数学期望为评判依据,若要使抽奖方案对电影院有利,则

②据某时段内的统计,当




某学校有教职工共160人,其中专职教师112人、行政人员16人、后勤人员32人,为了了解职工的某种情况,要从中抽取一个容量为20的样本.现要分别用简单随机抽样、分层抽样、系统抽样来抽取样本.方法一:将160人从1至160编上号,然后把标有1~160的160个号签放入箱内拌匀,然后从中抽出20个签,这样就抽取了一个容量为20的样本.
方法二:将160人从1至160编上号,按编号顺序分成20组,每组8人.先从第1组用抽签法抽出一个作为起始号码,如k(1≤k≤8)号,则在其余组中抽出(k+8n)(n=1,2,…,19)号,这样就抽取了一个容量为20的样本.
方法三:按20∶160=1∶8从专职教师中抽取14人,从行政人员中抽取2人,从后勤人员中抽取4人,这样就抽取了一个容量为20的样本.
以上三种抽样方法,按简单随机抽样、分层抽样、系统抽样的顺序分别是
方法二:将160人从1至160编上号,按编号顺序分成20组,每组8人.先从第1组用抽签法抽出一个作为起始号码,如k(1≤k≤8)号,则在其余组中抽出(k+8n)(n=1,2,…,19)号,这样就抽取了一个容量为20的样本.
方法三:按20∶160=1∶8从专职教师中抽取14人,从行政人员中抽取2人,从后勤人员中抽取4人,这样就抽取了一个容量为20的样本.
以上三种抽样方法,按简单随机抽样、分层抽样、系统抽样的顺序分别是
A.方法一、方法二、方法三 | B.方法二、方法一、方法三 |
C.方法一、方法三、方法二 | D.方法三、方法一、方法二 |
某城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,计划抽取一个容量为21的样本,应采用怎样的抽样方法?并写出抽样过程.
《九章算术·衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱. 欲以钱数多少衰出之,问各几何?”翻译为:“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比率交税,问三人各应付多少税?”则下列说法中错误的是
A.乙付的税钱应占总税钱的![]() | B.乙、丙两人付的税钱不超过甲 |
C.丙应出的税钱约为32 | D.甲、乙、丙三人出税钱的比例为56∶35∶18 |