- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知关于x的一元二次函数f(x)=ax2﹣2bx+8.
(1)设集合P={1,2,3}和Q={2,3,4,5},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间(﹣∞,2]上有零点且为减函数的概率?
(2)设集合P=[1,3]和Q[2,5],分别从集合P和Q中随机取一个实数作为a和b,求函数y=f(x)在区间(﹣∞,2]上有零点且为减函数的概率?
(1)设集合P={1,2,3}和Q={2,3,4,5},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间(﹣∞,2]上有零点且为减函数的概率?
(2)设集合P=[1,3]和Q[2,5],分别从集合P和Q中随机取一个实数作为a和b,求函数y=f(x)在区间(﹣∞,2]上有零点且为减函数的概率?
2019年电商“双十一”大战即将开始.某电商为了尽快占领市场,抢占今年“双十一”的先机,对成都地区年龄在15到75岁的人群“是否网上购物”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用网上购物的人数如下所示:(年龄单位:岁)
(1)若以45岁为分界点,根据以上统计数据填写下面的
列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“网上购物”与年龄有关?
(2)若从年龄在
的样本中随机选取2人进行座谈,求选中的2人中恰好有1人“使用网上购物”的概率.
参考数据:
参考公式:
.
年龄段 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
购物人数 | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45岁为分界点,根据以上统计数据填写下面的

| 年龄低于45岁 | 年龄不低于45岁 | 总计 |
使用网上购物 | | | |
不使用网上购物 | | | |
总计 | | | |
(2)若从年龄在

参考数据:
![]() | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:

甲乙两人各自独立的参加某单位面试,规定每位考生需要从编号为1-6的6道面试题中随机抽出3道进行面试,至少答对两道才能合格.已知甲能答对其中3道题,乙能答对其中4道题.
(1)求甲恰好答对两道题的概率.
(2)求甲合格且乙不合格的概率.
(1)求甲恰好答对两道题的概率.
(2)求甲合格且乙不合格的概率.
2019年是中国成立70周年,也是全面建成小康社会的关键之年.为了迎祖国70周年生日,全民齐心奋力建设小康社会,某校特举办“喜迎国庆,共建小康”知识竞赛活动.下面的茎叶图是参赛两组选手答题得分情况,则下列说法正确的是( )


A.甲组选手得分的平均数小于乙组选手的平均数 | B.甲组选手得分的中位数大于乙组选手的中位数 |
C.甲组选手得分的中位数等于乙组选手的中位数 | D.甲组选手得分的方差大于乙组选手的的方差 |
某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标值为
,当
时,产品为一级品;当
时,产品为二级品;当
时,产品为三级品.现用两种新配方(分别称为
配方和
配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
配方的频数分布表
配方的频数分布表
(1)从
配方生产的产品中按等级分层抽样抽取5件产品,再从这5件产品中任取3件,求恰好取到1件二级品的频率;
(2)若这种新产品的利润率
与质量指标
满足如下条件:
,其中
,请分别计算两种配方生产的产品的平均利润率,如果从长期来看,你认为投资哪种配方的产品平均利润率较大?







指标值分组 | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 30 | 40 | 20 |

指标值分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 5 | 10 | 15 | 30 | 40 |
(1)从

(2)若这种新产品的利润率




某大型商场统计周一至周五某型号洗衣机的销售量(单位:台),得到如下茎叶图,则该样本的中位数与平均数之差是( )


A.6 | B.2 | C.-2 | D.-6 |
某书店今年5月上架10种新书,且它们的首月销量(单位:册)情况为:100,50,100,150,150,100,150,50,100,100,频率为概率,解答以下问题:
(1)若该书店打算6月上架某种新书,估计它首月销量至少为100册的概率;
(2)若某种最新出版的图书订购价为10元/册,该书店计划首月内按12元/册出售,第二个月起按8元/册降价出售,降价后全部存货可以售出.试确定,该书店订购该图书50册,100册,还是150册有利于获得更多利润?
(1)若该书店打算6月上架某种新书,估计它首月销量至少为100册的概率;
(2)若某种最新出版的图书订购价为10元/册,该书店计划首月内按12元/册出售,第二个月起按8元/册降价出售,降价后全部存货可以售出.试确定,该书店订购该图书50册,100册,还是150册有利于获得更多利润?