的展开式中的系数为(   )
A.50B.20C.15D.
当前题号:1 | 题型:单选题 | 难度:0.99
某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
消费次第





收费比率





 
该公司注册的会员中没有消费超过次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:
消费次数





人数





 
假设汽车美容一次,公司成本为元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为元,求的分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
国际羽毛球比赛规则从2006年5月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为时,获胜的一方需超过对方2分才算取胜,直至双方比分打成时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为,甲接发球贏球的概率为,则在比分为,且甲发球的情况下,甲以赢下比赛的概率为(   )
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
2019年9月24日国家统计局在庆祝中华人民共和国成立70周年活动新闻中心举办新闻发布会指出,1952年~2018年,我国GDP查679.1亿元跃升至90.03万亿元,实际增长174倍;人均GDP从119元提高到6.46万元,实际增长70倍.全国各族人民,砥砺奋进,顽强拼搏,实现了经济社会的跨越式发展.如图是全国2010年至2018年GDP总量(万亿元)的折线图.

注:年份代码1~9分别对应年份2010~2018.
(1)由折线图看出,可用线性回归模型拟合与年份代码的关系,请用相关系数加以说明;
(2)建立关于的回归方程(系数精确到0.01),预测2019年全国GDP的总量.
附注:参考数据:.
参考公式:相关系数
回归方程中斜率和截距的最小二乘法估计公式分别为
当前题号:4 | 题型:解答题 | 难度:0.99
3个红球与3个黑球随机排成一行,从左到右依次在球上标记1,2,3,4,5,6,则红球上的数字之和小于黑球上的数字之和的概率为(   )
A.B.
C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
的展开式中含有常数项,则的最小值为(   )
A.5B.4
C.3D.2
当前题号:6 | 题型:单选题 | 难度:0.99
某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为秒.若一名行人来到该路口遇到红灯,则至少需要等待秒才出现绿灯的概率为______.
当前题号:7 | 题型:填空题 | 难度:0.99
“中秋节”期间,高速公路车辆较多,某调查公司在一服务区从七座以下小型汽车中,按进服务区的先后每间隔辆就抽取一辆的抽样方法,抽取名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:后得到如图所示的频率分布直方图.

(1)求这辆小型汽车车速的众数和中位数的估计值;
(2)若从车速在内的车辆中任意抽取辆,求车速在内的车辆至少有一辆的概率.
当前题号:8 | 题型:解答题 | 难度:0.99
如图是一组样本数据的频率分布直方图,则依据图形中的数据,可以估计总体的平均数与中位数分别是(   )
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
如图所示,三国时代数学家赵爽在《周髀算经》利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为30°,若向弦图内随机抛掷500颗米粒(立水即略不计,取),则落在小正方形(阴影)内的米粒数大约为(   )
A.62B.67C.72D.82
当前题号:10 | 题型:单选题 | 难度:0.99