- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙、丙三名学生参加某电视台举办的国学知识竞赛,在本次竞赛中只有过关和不过关两种结果,假设甲、乙、丙竞赛过关的概率分别为
,且他们竞赛过关与否互不影响.
(1)求在这次国学知识竞赛中,甲、乙、丙三名学生至少有一名学生过关的概率;
(2)记在这次国学知识竞赛中,甲、乙、丙三名学生过关的人数为
,求随机变量
的分布列和数学期望

(1)求在这次国学知识竞赛中,甲、乙、丙三名学生至少有一名学生过关的概率;
(2)记在这次国学知识竞赛中,甲、乙、丙三名学生过关的人数为



某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为
.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为
,每次中奖均可获奖金400元.
(1)求某员工选择方案甲进行抽奖所获奖金
(元)的分布列;
(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为

方案乙:员工连续三次抽奖,每次中奖率均为

(1)求某员工选择方案甲进行抽奖所获奖金

(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?
在20张百元纸币中混有4张假币,从中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率是( )
A.![]() | B.![]() | C.![]() | D.以上都不正确 |
在我校2017年高二某大型考试中,理科数学成绩
,统计结果显示
.假设我校参加此次考试的理科同学共有2000人,那么估计此次考试中我校成绩高于120分的人数是___________.


某校选择高一年级三个班进行为期二年的教学改革试验,为此需要为这三个班各购买某种设备1台.经市场调研,该种设备有甲乙两型产品,甲型价格是3000元/台,乙型价格是2000元/台,这两型产品使用寿命都至少是一年,甲型产品使用寿命低于2年的概率是
,乙型产品使用寿命低于2年的概率是
.若某班设备在试验期内使用寿命到期,则需要再购买乙型产品更换.
(1)若该校购买甲型2台,乙型1台,求试验期内购买该种设备总费用恰好是10000元的概率;
(2)该校有购买该种设备的两种方案,
方案:购买甲型3台;
方案:购买甲型2台乙型1台.若根据2年试验期内购买该设备总费用的期望值决定选择哪种方案,你认为该校应该选择哪种方案?


(1)若该校购买甲型2台,乙型1台,求试验期内购买该种设备总费用恰好是10000元的概率;
(2)该校有购买该种设备的两种方案,

