- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 判断圆与圆的位置关系
- 求两圆的交点坐标
- 由圆的位置关系确定参数或范围
- 由圆与圆的位置关系确定圆的方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知F是椭圆







(1)试判断以PF为直径的圆与圆

(2)在x轴上能否找到一定点M,使得

已知椭圆
的离心率为
,过
的左焦点
的直线
被圆
截得的弦长为
.
(1)求椭圆
的方程;
(2)设
的右焦点为
,在圆
上是否存在点
,满足
,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.








(1)求椭圆

(2)设





设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2;以F1,F2为焦点,离心率为
的椭圆记作C2

(1)求椭圆的标准方程;
(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点.当以B1B2为直径的圆经过F1时,求|A1A2|长.
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆
,是否存在定圆
,使得
与
恒相切?若存在,求出
的方程,若不存在,请说明理由.


(1)求椭圆的标准方程;
(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点.当以B1B2为直径的圆经过F1时,求|A1A2|长.
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆





已知椭圆E:
(a>b>0)过点(0,
),其左焦点
与点P(1,
)的连线与圆
相切.
(1)求椭圆E的方程;
(2)设Q为椭圆E上的一个动点,试判断以Q
为直径的圆与圆
的位置关系,并证明.





(1)求椭圆E的方程;
(2)设Q为椭圆E上的一个动点,试判断以Q


