- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 圆与圆的位置关系
- 判断圆与圆的位置关系
- 求两圆的交点坐标
- 由圆的位置关系确定参数或范围
- 由圆与圆的位置关系确定圆的方程
- 圆的公共弦
- 圆的公切线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(2013•黄梅县模拟)已知半径为5的球O被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的一圆的半径为4,则另一圆的半径为( )
A.![]() | B.![]() | C.![]() | D.![]() |
动圆P和圆C1:(x+1)2+y2=
外切和圆C2:(x﹣2)2+y2=
内切,那么动圆圆心P和已知两圆的圆心C1、C2构成三角形PC1C2的周长等于( )


A.5 | B.6 | C.7 | D.8 |
(2015秋•河南期末)与圆C1:x2+(y+1)2=1及圆C2:x2+(y﹣4)2=4都外切的动圆的圆心在( )
A.一个圆上 |
B.一个椭圆上 |
C.双曲线的一支上 |
D.一条抛物线上 |
已知圆C:x2+y2﹣2x+4my+4m2=0,圆C1:x2+y2=25,以及直线l:3x﹣4y﹣15=0.
(1)求圆C1:x2+y2=25被直线l截得的弦长;
(2)当m为何值时,圆C与圆C1的公共弦平行于直线l;
(3)是否存在m,使得圆C被直线l所截的弦AB中点到点P(2,0)距离等于弦AB长度的一半?若存在,求圆C的方程;若不存在,请说明理由.
(1)求圆C1:x2+y2=25被直线l截得的弦长;
(2)当m为何值时,圆C与圆C1的公共弦平行于直线l;
(3)是否存在m,使得圆C被直线l所截的弦AB中点到点P(2,0)距离等于弦AB长度的一半?若存在,求圆C的方程;若不存在,请说明理由.