- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 圆的方程
- 直线与圆的位置关系
- + 圆与圆的位置关系
- 圆与圆的位置关系
- 圆的公共弦
- 圆的公切线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0公共弦为直径的圆的方程为________.
[选修4-4:坐标系与参数方程]
在平面直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,曲线
,
的公共点为
,
.
(1)求直线
的斜率;
(2)若
,
分别为曲线
,
上的动点,当
取最大值时,求四边形
的面积.
在平面直角坐标系












(1)求直线

(2)若






已知两圆
的圆心分别为
,P为一个动点,且直线
的斜率之积为
.
(Ⅰ)求动点P的轨迹M的方程;
(Ⅱ)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C、D,使得
?若存在,求直线l的方程;若不存在,请说明理由.




(Ⅰ)求动点P的轨迹M的方程;
(Ⅱ)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C、D,使得
