- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知不经过原点的直线
在两坐标轴上的截距相等,且点
在直线
上.
(1)求直线
的方程;
(2)过点
作直线
,若直线
,
与
轴围成的三角形的面积为2,求直线
的方程.



(1)求直线

(2)过点






已知圆
与
轴负半轴相交于点
,与
轴正半轴相交于点
.
(1)若过点
的直线
被圆
截得的弦长为
,求直线
的方程;
(2)若在以
为圆心,半径为
的圆上存在点
,使得
(
为坐标原点),求
的取值范围.





(1)若过点





(2)若在以






我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长这种用极限思想解决数学问题的方法是数学史上的一项重大成就,现作出圆
的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( )

A.![]() | B.![]() |
C.![]() | D.![]() |