- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 几何体三视图的概念及辨析
- + 画几何体的三视图
- 由三视图还原几何体
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图正方体
,点
为线段
的中点,现用一个过点
的平面去截正方体,得到上下两部分,用如图的角度去观察上半部分几何体,所得的左视图为()






A.![]() | B.![]() |
C.![]() | D.![]() |
空间直角坐标系O-xyz中,某四面体的顶点坐标分别为(0,0,0),(0,1,1),(1,0,1),(1,1,0),画该四面体三视图时,以yOz平面为投影面所得到的视图为正视图,则该四面体的侧视图是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
如图1,已知正方体ABCD-A1B1C1D1的棱长为2,M,N,Q分别是线段AD1,B1C,C1D1上的动点,当三棱锥Q-BMN的正视图如图2所示时,三棱锥俯视图的面积为


A.2 | B.1 |
C.![]() | D.![]() |
如图1,已知正方体ABCD-A1B1C1D1的棱长为2,M,N,Q分别是线段AD1,B1C,C1D1上的动点,当三棱锥Q—BMN的正视图如图2所示时,此三棱锥俯视图的面积为


A.1 | B.2 | C.![]() | D.![]() |
“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两等径正贯的圆柱体的侧面围成,其直观图如图(其中四边形是为体现直观性而作的辅助线)当“牟合方盖”的正视图和侧视图完全相同时,其俯视图可能为


A.![]() | B.![]() | C.![]() | D.![]() |