- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 圆柱的结构特征辨析
- 圆柱轴截面的有关计算
- 圆柱的展开图及最短距离问题
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列结论中正确的是( )
A.半圆弧以其直径为轴旋转一周所形成的曲面叫做球 |
B.直角三角形绕一直角边为轴旋转一周得到的旋转体是圆锥 |
C.夹在圆柱的两个平行截面间的几何体还是一个旋转体 |
D.用一个平面截圆锥底面与截面组成的部分是圆台 |
下列结论中正确的是( )
A.以直角三角形的一边所在直线为旋转轴,其余各边旋转一周而形成的面所围成的几何体是一个圆锥 |
B.以直角梯形的一边所在直线为旋转轴,其余各边旋转一周而形成的面所围成的几何体是一个圆台 |
C.以平行四边形的一边所在直线为旋转轴,其余各边旋转一周而形成的面所围成的几何体是一个圆柱 |
D.圆面绕其一条直径所在直线旋转![]() |
下列命题中,正确的个数是( )
①圆柱的轴截面是过母线的截面中最大的一个;
②用任意一个平面去截球体得到的截面一定是一个圆面;
③用任意一个平面去截圆锥得到的截面一定是一个圆面.
①圆柱的轴截面是过母线的截面中最大的一个;
②用任意一个平面去截球体得到的截面一定是一个圆面;
③用任意一个平面去截圆锥得到的截面一定是一个圆面.
A.0 | B.1 | C.2 | D.3 |
下列说法正确的是( )
A.以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥 |
B.以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台 |
C.圆柱、圆锥、圆台的底面都是圆面 |
D.一个平面截圆锥,得到一个圆锥和一个圆台 |
给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②存在每个面都是直角三角形的四面体;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )
A.![]() | B.![]() | C.![]() | D.![]() |
下列说法中错误的是( )
A.正棱锥的所有侧棱长相等 |
B.圆柱的母线垂直于底面 |
C.直棱柱的侧面都是全等的矩形 |
D.用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形 |
下列命题正确的是______(只填序号).
①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;
②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;
③圆柱、圆锥、圆台的底面都是圆;
④以等腰三角形的底边上的高所在直线为旋转轴,其余各边旋转180°形成的曲面围成的几何体是圆锥;
⑤球面上四个不同的点一定不在同一平面内;
⑥球的半径是球面上任意一点和球心的连线段.
①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;
②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;
③圆柱、圆锥、圆台的底面都是圆;
④以等腰三角形的底边上的高所在直线为旋转轴,其余各边旋转180°形成的曲面围成的几何体是圆锥;
⑤球面上四个不同的点一定不在同一平面内;
⑥球的半径是球面上任意一点和球心的连线段.