- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 线性规划的可行解的概念及辨析
- + 根据线性规划求最值或范围
- 根据最优解求参数
- 线性规划问题的最优整数解问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义在R上的函数f(x)对任意x1,x2(x1≠x2)都有,且函数y=f(x-1)的图象关于点(1,0)中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2).则当1≤s≤4时,
的取值范围是( )
A.[-3,-![]() | B.[-3,-![]() | C.[-5,-![]() | D.[-5,-![]() |