- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 由已知条件判断所给不等式是否正确
- 由不等式的性质比较数(式)大小
- + 作差法比较不等式的大小
- 作商法比较不等式的大小
- 由不等式的性质证明不等式
- 利用不等式求值或取值范围
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
是定义域为
的奇函数,且当
时,
,其中
是常数.
(1)求
的解析式;
(2)求实数
的值,使得函数
,
的最小值为
;
(3)已知函数
满足:对任何不小于
的实数
,都有
,其中
为不小于
的正整数常数,求证:
.





(1)求

(2)求实数




(3)已知函数







定义域为R,且对任意实数
都满足不等式
的所有函数
组成的集合记为M,例如,函数
.
(1)已知函数
,证明:
;
(2)写出一个函数
,使得
,并说明理由;
(3)写出一个函数
,使得数列极限




(1)已知函数



(2)写出一个函数


(3)写出一个函数



设
是定义在
上的函数,若对任何实数
以及
中的任意两数
、
,恒有
,则称
为定义在
上的
函数.
(1)证明函数
是定义域上的
函数;
(2)判断函数
是否为定义域上的
函数,请说明理由;
(3)若
是定义域为
的函数,且最小正周期为
,试证明
不是
上的
函数.










(1)证明函数


(2)判断函数


(3)若






电信部门有两种付费方式.甲方案:入网,每月月租费50元,通话费0.38元/分钟;乙方案:买卡,不收月租费,通话费为0.6元/分钟.若某人每月的通话时间为300分钟以上,则应选__________方案(填甲或乙);