- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 不等式的性质
- 一元二次不等式
- 其他不等式
- 线性规划
- 基本不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列结论中正确的是( )
A.若a>b.则(a﹣b)c2>0 | B.若![]() |
C.若a>b,c>d,则a﹣c>b﹣d | D.若a2>b2,则a>b |
商品价格与商品需求量是经济学中的一种基本关系,某服装公司需对新上市的一款服装制定合理的价格,需要了解服装的单价x(单位:元)与月销量y(单位:件)和月利润z(单位:元)的影响,对试销10个月的价格
和月销售量
(
)数据作了初步处理,得到如图所示的散点图及一些统计量的值.

表中
.
(1)根据散点图判断,
与
哪一个适宜作为需求量y关于价格x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这批服装的成本为每件10元,根据(1)的结果回答下列问题;
(i)预测当服装价格
时,月销售量的预报值是多少?
(ii)当服装价格x为何值时,月利润的预报值最大?(参考数据
)
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为
.




x | ![]() | y | ![]() | ![]() | ![]() | ![]() |
61 | 0.018 | 372 | ![]() | 2670 | 26 | 0.0004 |
表中

(1)根据散点图判断,


(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这批服装的成本为每件10元,根据(1)的结果回答下列问题;
(i)预测当服装价格

(ii)当服装价格x为何值时,月利润的预报值最大?(参考数据

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

不等式
有多种解法,其中有一种方法如下,在同一直角坐标系中作出
和
的图象,然后根据图象进行求解,请类比此方法求解以下问题:设
,若对任意
,都有
成立,则
____________.






