- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数量积的坐标表示
- + 向量模的坐标表示
- 坐标计算向量的模
- 向量垂直的坐标表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知一非零向量列
满足:
,
.
(1)证明:
是等比数列;
(2)设
是
的夹角
,
=
,
,求
;
(3)设
,问数列
中是否存在最小项?若存在,求出最小值;若不存在,请说明理由.




(1)证明:

(2)设







(3)设


在△ABC中,顶点A(-1,0),B(1,0),动点D,E满足:①
;②
,③
与
共线.
(Ⅰ)求△ABC顶点C的轨迹方程;
(Ⅱ)是否存在圆心在原点的圆,只要该圆的切线与顶点C的轨迹有两个不同交点M,N,就一定有
,若存在,求该圆的方程;若不存在,请说明理由.




(Ⅰ)求△ABC顶点C的轨迹方程;
(Ⅱ)是否存在圆心在原点的圆,只要该圆的切线与顶点C的轨迹有两个不同交点M,N,就一定有

己知向量
,向量
与
垂直,且
,则
的坐标为( )





A.(b,-a) | B.(-a,b) | C.(-a,b)或(a,-b) | D.(b,-a)或(-b,a) |