- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- + 数量积的坐标表示
- 向量模的坐标表示
- 坐标计算向量的模
- 向量垂直的坐标表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知⊙
的半径为
,圆心
的坐标为
,其中
.
,
为该圆的两条切线,
为坐标原点,
,
为切点,
在第一象限,
在第四象限.
(
)若
时,求切线
,
的斜率.
(
)若
时,求
外接圆的标准方程.
(
)当
点在
轴上运动时,将
表示成
的函数
,并求函数
的最小值.












(




(



(







已知向量
,
,函数
的最小值为
(1)当
时,求
的值;
(2)求
;
(3)已知函数
为定义在R上的增函数,且对任意的
都满足
问:是否存在这样的实数m,使不等式
+
对所有
恒成立,若存在,求出m的取值范围;若不存在,说明理由.




(1)当


(2)求

(3)已知函数



问:是否存在这样的实数m,使不等式




恒成立,若存在,求出m的取值范围;若不存在,说明理由.