- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- + 数量积的坐标表示
- 向量模的坐标表示
- 坐标计算向量的模
- 向量垂直的坐标表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知向量
令
(1)求函数
的对称轴方程;
(2)设
,当
时,求函数
的最小值
;
(3)在(2)的条件下,若对任意的实数
且
,不等式
对任意的
恒成立,求实数
的取值范围.


(1)求函数

(2)设




(3)在(2)的条件下,若对任意的实数





已知
,函数
(其中
的图像在
轴右侧的第一个最高点(即函数取得最大值的点)为
,在原点右侧与
轴的第一个交点为
.
(1)求函数
的表达式;
(2)判断函数
在区间
上是否存在对称轴,存在求出方程;否则说明理由;









(1)求函数

(2)判断函数


已知向量
=(-cos 2x,a),
=(a,2-
sin 2x),函数f(x)=
-5(a∈R,a≠0)
(1)求函数f(x)(x∈R)的值域;
(2)当a=2时,若对任意的t∈R,函数y=f(x),x∈(t,t+b]的图像与直线y=-1有且仅有两个不同的交点,试确定b的值(不必证明),并求函数y=f(x)的在[0,b]上单调递增区间.




(1)求函数f(x)(x∈R)的值域;
(2)当a=2时,若对任意的t∈R,函数y=f(x),x∈(t,t+b]的图像与直线y=-1有且仅有两个不同的交点,试确定b的值(不必证明),并求函数y=f(x)的在[0,b]上单调递增区间.