- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量的实际背景及基本概念
- 平面向量的线性运算
- + 平面向量的基本定理及坐标表示
- 平面向量基本定理
- 平面向量的正交分解与坐标表示
- 平面向量线性运算的坐标表示
- 平面向量共线的坐标表示
- 平面向量的数量积
- 平面向量的应用举例
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在边长为1的正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧(在正方形内,包括边界点)上的任意一点,则
的取值范围是________ ; 若向量
,则
的最小值为_________ . 




如图所示,在平面斜坐标系xOy中,∠xOy=60°,平面上任意一点P关于斜坐标系的斜坐标是这样定义的:若
=xe1+ye2(其中e1,e2分别为x轴、y轴同方向的单位向量),则点P的斜坐标为(x,y).

(1)若点P在斜坐标系xOy中的斜坐标为(2,-2),求点P到原点O的距离.
(2)求以原点O为圆心,1为半径的圆在斜坐标系xOy中的方程.


(1)若点P在斜坐标系xOy中的斜坐标为(2,-2),求点P到原点O的距离.
(2)求以原点O为圆心,1为半径的圆在斜坐标系xOy中的方程.
如图,M是矩形ABCD的边CD上的一点,AC与BM交于点N,BN=
BM.

(1)求证:M是CD的中点;
(2)若AB=2,BC=1,H是BM上异于点B的一动点,求
的最小值.


(1)求证:M是CD的中点;
(2)若AB=2,BC=1,H是BM上异于点B的一动点,求
