- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量的实际背景及基本概念
- + 平面向量的线性运算
- 平面向量的加法
- 相反向量
- 平面向量的数乘
- 平面向量共线定理
- 平面向量的基本定理及坐标表示
- 平面向量的数量积
- 平面向量的应用举例
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义:如果一个列从第二项起,每一项与它的前一项的差都等于同一个常向量,那么这个向量列叫做等差向量列,这个常向量叫做等差向量列的公差:已知向量
是以
为首项,公差
的等差向量列,则向量
的前11项和
( )





A.![]() | B.![]() | C.![]() | D.![]() |
如图,已知椭圆
,斜率为﹣1的直线与椭圆C相交于A,B两点,平行四边形OAMB(O为坐标原点)的对角线OM的斜率为
,则椭圆的离心率为( )




A.![]() | B.![]() | C.![]() | D.![]() |