- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量的概念与表示
- + 向量的模
- 零向量与单位向量
- 相等向量
- 平行向量(共线向量)
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义向量
的“相伴函数”为
,函数
的“相伴向量”为
,其中O为坐标原点,记平面内所有向量的“相伴函数”构成的集合为S.
(1)设
,求证:
;
(2)已知
且
,求其“相伴向量”的模;
(3)已知
为圆
上一点,向量
的“相伴函数”
在
处取得最大值,当点M在圆C上运动时,求
的取值范围.




(1)设


(2)已知


(3)已知







(文科)设向量
=(cos23°,cos67°),
=(cos68°,cos22°),
=
+t
(t∈R),则|
|的最小值是____________;
(理科)已知a>0,设函数f(x)=
+sinx,x∈[-a,a]的最大值为M,最小值为m,则M+m=__________.






(理科)已知a>0,设函数f(x)=
