- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 任意角和弧度制
- 任意角的三角函数
- 同角三角函数的基本关系
- 三角函数的诱导公式
- 三角函数的图象与性质
- + 函数y=Asin(ωx+φ)的图象变换
- 四种基本图象变换
- 三角函数的图象变换
- 三角函数的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将函数f(x)=2sin(ωx﹣
)(ω>0)的图象向左平移
个单位长度,得到函数y=g(x)的图象若y=g(x)在(﹣
)上为增函数,则ω的最大值为( )



A.3 | B.2 | C.![]() | D.![]() |
设函数
的图像与
轴的交点为
,在
轴右侧的第一个最高点和第一个与
轴交点分别为
(1)求
的解析式;
(2)将函数
图像上所有点的横坐标变为原来的
倍(纵坐标不变),再将所得图像沿
轴正方向平移
个单位,得到函数
的图像,求
的解析式;
(3)在(2)的条件下求函数
在
上的值域。






(1)求

(2)将函数






(3)在(2)的条件下求函数


已知函数f(x)=sin(ωx+θ),其中ω>0,θ∈(0,
),
=
=0,(x1≠x2),|x2-x1|min=
,f(x)=f(
-x),将函数f(x)的图象向左平移
个单位长度得到函数g(x)的图象,则函数g(x)的单调递减区间是






A.[kπ-![]() ![]() | B.[kπ,kπ+![]() |
C.[kπ+![]() ![]() | D.[kπ+![]() ![]() |
已知函数
(
)的部分图像如图所示,则
的图象可由
的图象( )得到.






A.向右平移![]() | B.向左平移![]() |
C.向右平移![]() | D.向左平移![]() |