- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 识别三角函数的图象(含正、余弦,正切)
- + 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若函数
满足
且
,则称函数
为“
函数”.
(1)试判断
是否为“
函数”,并说明理由;
(2)函数
为“
函数”,且当
时,
,求
的解析式,并写出在
上的单调递增区间;
(3)在(2)的条件下,当
时,关于
的方程
为常数
有解,记该方程所有解的和为
,求
.





(1)试判断


(2)函数






(3)在(2)的条件下,当






已知向量
,
,
,
,函数
,
的最小正周期为
.
(1)求
的单调增区间;
(2)方程
;在
上有且只有一个解,求实数n的取值范围;
(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得
+
+m(
-
)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.







(1)求

(2)方程


(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得



