- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 求含sinx型函数的定义域
- + 求含sinx型函数的值域和最值
- 由正弦(型)函数的值域(最值)求参数
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的图像相邻两个对称轴之间的距离为
,且
的图像与
的图像有一个横坐标为
的交点.
(1)求
的解析式;
(2)当
时,求
的最小值,并求使
取得最小值的
的值.





(1)求

(2)当




已知定义在
上的函数
满足:
对任意的实数
都成立,当且仅当
时取等号,则称函数
是
上的
函数,已知
函数
具有性质:
(
,
)对任意的实数
(
)都成立,当且仅当
时取等号.
(1)试判断函数
(
且
)是否是
上的
函数,说明理由;
(2)求证:
是
上的
函数,并求
的最大值(其中
、
、
是△
三个内角);
(3)若
定义域为
,
①
是奇函数,证明:
不是
上的
函数;
②
最小正周期为
,证明:
不是
上的
函数.
















(1)试判断函数





(2)求证:








(3)若


①




②




