- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 求含sinx型函数的定义域
- + 求含sinx型函数的值域和最值
- 由正弦(型)函数的值域(最值)求参数
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(Ⅰ)化简
的表达式并求函数的周期;
(Ⅱ)当
时,若函数
在
时取得最大值,求
的值;
(Ⅲ)在(Ⅱ)的条件下,将函数
图象上各点的横坐标扩大到原来的2倍,纵坐标不变,得到函数
的图象,求函数
的单调递增区间.

(Ⅰ)化简

(Ⅱ)当




(Ⅲ)在(Ⅱ)的条件下,将函数



已知函数以
,其相邻两个最值点的横坐标之差为2π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c满足(2a-c)cosB=bcosC,求函f(A)的值域.

(1)求f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c满足(2a-c)cosB=bcosC,求函f(A)的值域.