- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 任意角和弧度制
- 周期现象
- 轴线角
- 弧度制
- 角度与弧度的互化
- 弧长公式、扇形面积公式
- 任意角的三角函数
- 同角三角函数的基本关系
- 三角函数的诱导公式
- 三角函数的图象与性质
- 函数y=Asin(ωx+φ)的图象变换
- 三角函数的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,某传动装置由两个陀螺
,
组成,陀螺之间没有滑动,每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的
,且
,
的轴相互垂直,它们相接触的直线与
的轴所成角
,若陀螺
中圆锥的底面半径为
(
);

(1)求陀螺
的体积;
(2)当陀螺
转动一圈时,陀螺
中圆锥底面圆周上一点
转动到点
,求
与
之间的距离;











(1)求陀螺

(2)当陀螺






下面有5个命题:
①函数
的最小正周期是
.
②终边在
轴上的角的集合是
.
③在同一坐标系中,函数
的图象和函数
的图象有3个公共点.
④把函数
的图象向右平移
得到
的图象.
⑤函数
在
上是减函数.
其中,真命题的编号是___________(写出所有真命题的编号)
①函数


②终边在


③在同一坐标系中,函数


④把函数



⑤函数


其中,真命题的编号是___________(写出所有真命题的编号)
《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=
(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.
按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为
,弦长等于9米的弧田.

(1)计算弧田的实际面积;
(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)

按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为


(1)计算弧田的实际面积;
(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)
给出下列命题:
①第二象限角大于第一象限角;
②三角形的内角是第一象限角或第二象限角;
③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;
④若sinα=sinβ,则α与β的终边相同;
⑤若cosθ<0,则θ是第二或第三象限的角.
其中正确命题的个数是( )
①第二象限角大于第一象限角;
②三角形的内角是第一象限角或第二象限角;
③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;
④若sinα=sinβ,则α与β的终边相同;
⑤若cosθ<0,则θ是第二或第三象限的角.
其中正确命题的个数是( )
A.1 | B.2 | C.3 | D.4 |