- 集合与常用逻辑用语
- 函数与导数
- + 平均变化率
- 导数的几何意义
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
路灯距地面8 m,一个身高为1.6 m的人以84 m/min的速度在地面上从路灯在地面上射影点C沿某直线离开路灯.
(1)求身影的长度y与人距路灯的距离x之间的关系式;
(2)求人离开路灯的第一个10 s内身影的平均变化率.
(1)求身影的长度y与人距路灯的距离x之间的关系式;
(2)求人离开路灯的第一个10 s内身影的平均变化率.
如图显示物体甲、乙在时间0到t1范围内,路程的变化情况,下列说法正确的是________.

①在0到t0范围内,甲的平均速度大于乙的平均速度;
②在0到t0范围内,甲的平均速度小于乙的平均速度;
③在t0到t1范围内,甲的平均速度大于乙的平均速度;
④在t0到t1范围内,甲的平均速度小于乙的平均速度.

①在0到t0范围内,甲的平均速度大于乙的平均速度;
②在0到t0范围内,甲的平均速度小于乙的平均速度;
③在t0到t1范围内,甲的平均速度大于乙的平均速度;
④在t0到t1范围内,甲的平均速度小于乙的平均速度.
一棵树2011年1月1日高度为4.5 m,2012年1月1日高度为4.98 m,则这棵树2011年高度的月平均变化率是________.
在曲线y=x2+1的图像上取一点(1,2)及邻近一点(1.1,2.21),则该曲线在[1,1.1]上的平均变化率为________.
某人服药后,人吸收药物的情况可以用血液中药物的浓度c(单位:mg/mL)来表示,它是时间t(单位:min)的函数,表示为c=c(t),下表给出了c(t)的一些函数值:

服药后30~70 min这段时间内,药物浓度的平均变化率为________.

服药后30~70 min这段时间内,药物浓度的平均变化率为________.
生活经验告诉我们,当水注进容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图像,A对应________;B对应________;C对应________;D对应________.
如图,直线
和圆
,当
从
开始在平面上绕点
按逆时针方向匀速转动(转动角度不超过
)时,它扫过的圆内阴影部分的面积
是时间
的函数.这个函数图象大致是










A.![]() | B.![]() | C.![]() | D.![]() |