- 集合与常用逻辑用语
- 函数与导数
- + 根据函数零点的个数求参数范围
- 根据一次函数零点的分布求参数范围
- 根据二次函数零点的分布求参数的范围
- 根据指对幂函数零点的分布求参数范围
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)若
在区间
上是单调函数,求实数
的取值范围;
(2)设
,若函数
图像与
轴恰有两个不同的交点,求实数
的取值范围;
(3)若不等式
,
恒成立,求实数
的取值范围.

(1)若



(2)设




(3)若不等式



在平行四边形
中,过点
的直线与线段
分别相交于点
,若
.
(1)求
关于
的函数解析式;
(2)定义函数
,点列
在函数
的图像上,且数列
是以1为首项,
为公比的等比数列,
为原点,令
,是否存在点
,使得
?若存在,求出
点的坐标,若不存在,说明理由.
(3)设函数
为
上的偶函数,当
时,
函数
的图像关于直线
对称,当方程
在
上有两个不同的实数解时,求实数
的取值范围.





(1)求


(2)定义函数










(3)设函数









设
,函数
(1)若
,求出函数
在区间上
的最大值.
(2)若
,求出函数
的单调区间(不必证明)
(3)若存在
,使得关于
方程
有三个不相等的实数根,求出实数
的取值范围.


(1)若



(2)若


(3)若存在



