- 集合与常用逻辑用语
- 函数与导数
- 研究对数函数的单调性
- + 对数型复合函数的单调性
- 对数函数单调性的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,A,B,C为函数
的图象上的三点,它们的横坐标分别是t、t+2、t+4,其中t≥1,
.

(1)设△ABC的面积为S,求S=f(t);
(2)判断函数S=f(t)的单调性;
(3)求S=f(t)的最大值.

.

(1)设△ABC的面积为S,求S=f(t);
(2)判断函数S=f(t)的单调性;
(3)求S=f(t)的最大值.
已知函数f(x)=ln(ax2+2x+1),g(x)=lo
(x2-4x-5).
(1)若f(x)的定义域为R,求实数a的取值范围;
(2)若f(x)的值域为R,求实数a的取值范围;
(3)求函数g(x)的递减区间.

(1)若f(x)的定义域为R,求实数a的取值范围;
(2)若f(x)的值域为R,求实数a的取值范围;
(3)求函数g(x)的递减区间.