- 集合与常用逻辑用语
- 函数与导数
- 判断指数函数的单调性
- + 判断指数型复合函数的单调性
- 比较指数幂的大小
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)
f(x),则称f(x)为M上的l高调函数.现给出下列命题:①函数f(x)=2﹣x为R上的1高调函数;②函数f(x)=sin2x为R上的π高调函数;③如果定义域为[﹣1,+∞)的函数f(x)=x2为[﹣1,+∞)上m高调函数,那么实数m的取值范围是[2,+∞);④函数f(x)=lg(|x﹣2|+1)为[1,+∞)上的2高调函数.其中真命题的个数为( )

A.0 | B.1 | C.2 | D.3 |
对于定义在
上的函数
,若函数
满足:①在区间
上单调递减;②存在常数
,使其值域为
,则称函数
是函数
的“渐近函数”.
(1)求证:函数
不是函数
的“渐近函数”;
(2)判断函数
是不是函数
,
的“渐近函数”,并说明理由;
(3)若函数
,
,
,求证:
是函数
的“渐近函数”充要条件是
.








(1)求证:函数


(2)判断函数



(3)若函数





