刷题宝
  • 刷题首页
题库 高中数学

题干

对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数,使其值域为,则称函数是函数的“渐近函数”.
(1)求证:函数不是函数的“渐近函数”;
(2)判断函数是不是函数,的“渐近函数”,并说明理由;
(3)若函数,,,求证:是函数的“渐近函数”充要条件是.
上一题 下一题 0.99难度 解答题 更新时间:2020-03-11 11:13:46

答案(点此获取答案解析)

同类题1

如图,在三棱锥中,已知面,点在上,,设,用表示,记函数,则下列表述正确的是()
A.是关于的增函数B.是关于的减函数
C.关于先递增后递减D.关于先递减后递增

同类题2

已知定义在的函数满足以下条件:
①对任意实数,恒有;
②当时,;③.
(1)求,的值;
(2)若对任意恒成立,求的取值范围;
(3)求不等式的解集.

同类题3

已知函数,则(    )
A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数
C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数

同类题4

设,则对任意实数,“”是“”的(   )条件
A.充分不必要B.必要不充分C.充要D.既不充分也不必要

同类题5

已知定义在上的函数满足下列条件:①对定义域内任意,恒有;②当时;③.
(1)求的值;
(2)求证:函数在上为减函数;
(3)解不等式 :.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 判断指数型复合函数的单调性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)