- 集合与常用逻辑用语
- 函数与导数
- 函数的定义
- 区间
- 函数的定义域
- 函数的值域
- 函数的解析式
- 相等函数
- + 函数的表示方法
- 解析法表示函数
- 图象法表示函数
- 列表法表示函数
- 分段函数
- 映射
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设f,g都是从A到A的映射(其中A={1,2,3}),其对应关系如下表:
则f(g(3))等于( )
x | 1 | 2 | 3 |
f | 3 | 1 | 2 |
g | 3 | 2 | 1 |
则f(g(3))等于( )
A.1 | B.2 |
C.3 | D.不存在 |
已知函数
,将
的图象向右平移两个单位长度,得到函数
的图象.
(1)求函数
的解析式;
(2)若方程
在
上有且仅有一个实根,求
的取值范围;
(3)若函数
与
的图象关于直线
对称,设
,已知
对任意的
恒成立,求
的取值范围.



(1)求函数

(2)若方程



(3)若函数







已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M具有∟性,给出下列四个集合:
①M={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的个数是( )
①M={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的个数是( )
A.1 | B.2 | C.3 | D.4 |
设P(x0,y0)是函数f(x)图象上任意一点,且y
≥x
,则f(x)的解析式可以是


A.f(x)=x-![]() | B.f(x)=ex-1 |
C.f(x)=x+![]() | D.f(x)=tan x |