- 集合与常用逻辑用语
- 函数与导数
- 函数的定义
- 区间
- 函数的定义域
- 函数的值域
- + 函数的解析式
- 已知函数类型求解析式
- 已知f(g(x))求解析式
- 求抽象函数的解析式
- 相等函数
- 函数的表示方法
- 分段函数
- 映射
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量
(单位:微克)与时间
(单位:小时)之间近似满足如图所示的曲线.
(1)写出第一次服药后
与
之间的函数关系式;
(2)据进一步测定:每毫升血液中含药量不少于
微克时,治疗有效.问:服药多少小时开始有治疗效果?治疗效果能持续多少小时?(精确到
,参考数据:
)


(1)写出第一次服药后


(2)据进一步测定:每毫升血液中含药量不少于




若对于任意x∈R都有f(x)+2f(-x)=3cosx-sinx,则函数f(2x)图象的对称中心为( )
A.(kπ-![]() | B.(![]() ![]() |
C.(kπ-![]() | D.(![]() ![]() |
已知二次函数
满足
,
.
求函数
的解析式;
若关于x的不等式
在
上恒成立,求实数t的取值范围;
若函数
在区间
内至少有一个零点,求实数m的取值范围











定义在(0,+∞)上的函数f(x)满足f(2x)=x2-2x.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)若关于x的方程f(x)=
在(1,4)上有实根,求实数a的取值范围.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)若关于x的方程f(x)=
