- 集合与常用逻辑用语
- 函数与导数
- + 函数及其性质
- 函数及其表示
- 函数的基本性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示是某条公共汽车路线收支差额y与乘客量x的图象(收支差额=车票收入—支出费用)由于目前本条线路在亏损,公司有关人员提出了两条建议:
建议(Ⅰ)是不改变车票价格,减少支出费用;建议(Ⅱ)是不改变支出费用,提高车票价格. 图中虚线表示调整前的状态,实线表示调整后的状态. 在上面四个图象中


建议(Ⅰ)是不改变车票价格,减少支出费用;建议(Ⅱ)是不改变支出费用,提高车票价格. 图中虚线表示调整前的状态,实线表示调整后的状态. 在上面四个图象中


A.①反映了建议(Ⅱ),③反映了建议(Ⅰ) | B.①反映了建议(Ⅰ),③反映了建议(Ⅱ) |
C.②反映了建议(Ⅰ),④反映了建议(Ⅱ) | D.④反映了建议(Ⅰ),②反映了建议(Ⅱ) |
函数
的定义域为
,若对任意的
,当
时,都有
,则称
在
上为非减函数. 设
在
上为非减函数,且满足:①
;②
;③
.则:(ⅰ)
_____;(ⅱ)
_______.














已知函数f(x)
.

(1)画出函数f(x)的图象,根据图象直接写出f(x)的值域;
(2)根据图象直接写出满足f(x)≥2的所有x的集合;
(3)若f(x)的递减区间为(﹣∞,a),递增区间为(b,+∞),直接写出a的最大值,b的最小值.


(1)画出函数f(x)的图象,根据图象直接写出f(x)的值域;
(2)根据图象直接写出满足f(x)≥2的所有x的集合;
(3)若f(x)的递减区间为(﹣∞,a),递增区间为(b,+∞),直接写出a的最大值,b的最小值.
已知f(x)是奇函数,且当x<0时,f(x)=x2+3x+2.若当x∈[1,3]时,n≤f(x)≤m恒成立,则m-n的最小值为( )
A.![]() | B.2 | C.![]() | D.![]() |
若
(其中
为整数),则称
是离实数
最近的整数,记作
.下列关于函数
的命题中,正确命题的序号是__________.
①函数
的定义域为
,值域为
;
②函数
是奇函数;
③函数
的图象关于直线
(
)对称;
④函数
是周期函数,最小正周期为1;
⑤函数
在区间
上是增函数.






①函数



②函数

③函数



④函数

⑤函数

