如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=
,则CE= .


如图,矩形ABCD中,AB=4,BC=
(
).P为边BC上一动点(不与B、C重合),过P点作PE⊥AP交直线CD于E.
(1)求证:△ABP∽△PCE;
(2)当P为BC中点时,E恰好为CD的中点,求
的值;
(3)若
=12,DE=1,求BP的长.


(1)求证:△ABP∽△PCE;
(2)当P为BC中点时,E恰好为CD的中点,求

(3)若


如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).
(1)当t=1时,KE=_____,EN=_____;
(2)当t为何值时,△APM的面积与△MNE的面积相等?
(3)当点K到达点N时,求出t的值;
(4)当t为何值时,△PKB是直角三角形?
(1)当t=1时,KE=_____,EN=_____;
(2)当t为何值时,△APM的面积与△MNE的面积相等?
(3)当点K到达点N时,求出t的值;
(4)当t为何值时,△PKB是直角三角形?

在平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为O(0,0),A(﹣x,0),C(0,y),且x、y满足
.
(1)矩形的顶点B的坐标是 .
(2)若D是AB中点,沿DO折叠矩形OABC,使A点落在点E处,折痕为DO,连BE并延长BE交y轴于Q点.
①求证:四边形DBOQ是平行四边形.
②求△OEQ面积.
(3)如图2,在(2)的条件下,若R在线段AB上,AR=4,P是AB左侧一动点,且∠RPA=135°,求QP的最大值是多少?

(1)矩形的顶点B的坐标是 .
(2)若D是AB中点,沿DO折叠矩形OABC,使A点落在点E处,折痕为DO,连BE并延长BE交y轴于Q点.
①求证:四边形DBOQ是平行四边形.
②求△OEQ面积.
(3)如图2,在(2)的条件下,若R在线段AB上,AR=4,P是AB左侧一动点,且∠RPA=135°,求QP的最大值是多少?

如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点
A.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点 | B.![]() (1)求m的值及该抛物线对应的解析式; (2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标; (3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由. |
如图,在
中,
,
,
,点
是线段
上任意一点,过点
作
交
于点
,过点
作
交
于点
,过点
作
交
于点
.设线段
的长为
.

(1)用含
的代数式表示线段
的长.
(2)当四边形
为菱形时,求
的值.
(3)设
与矩形
重叠部分图形的面积为
,求
与
之间的函数关系式.
(4)连结
、
,当
与
垂直或平行时,直接写出
的值.





















(1)用含


(2)当四边形


(3)设





(4)连结





如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①
=
;②△AEF∽△ACD;③S△BCE=36;④S△ABE=12.其中一定正确的是_____(填序号)


