- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图所示,将一个长方形纸片ABCD沿对角线AC折叠.点B 落在E点,AE交DC 于F点,已知AB=8cm,BC=4cm.求折叠后重合部分的面积.

如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D点落在GF上,得到△HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF,已知HE=HF,下列结论:①△MEH为等边三角形;②AE⊥EF;③△PHE∽△HAE;④
,其中正确的结论是( )



A.①②③ | B.①②④ | C.①③④ | D.①②③④ |
如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于( )


A.![]() | B.![]() | C.![]() | D.![]() |
把长方形ABCD沿着EF对折,EF为折痕.对折后,P、C、F三点恰好在同一条直线上,∠DCF=22°.
(1)请运用符号“≌”写出图中全等的多边形;
(2)试求出∠OEC的度数.
(1)请运用符号“≌”写出图中全等的多边形;
(2)试求出∠OEC的度数.

如图,四边形ABCD为矩形,将矩形ABCD沿MN折叠,折痕为MN,点B的对应点B′落在AD边上,已知AB=6,AD=4.
(1)若点B′与点D重合,连结DM,BN,求证:四边形BMB′N为菱形;
(2)在(1)问条件下求出折痕MN的长.
(1)若点B′与点D重合,连结DM,BN,求证:四边形BMB′N为菱形;
(2)在(1)问条件下求出折痕MN的长.
