- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 根据已知条件判断是否构成平行四边形
- 添一个条件使四边形成为平行四边形
- 数图形中平行四边形的个数
- 求与已知三点组成平行四边形的点的个数
- 证明四边形是平行四边形
- 全等三角形拼平行四边形问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
下列说法错误的是( )
A.连接对角线互相垂直的四边形各边中点所得的四边形是矩形 |
B.连接对角线互相平分的四边形各边中点所得的四边形是平行四边形 |
C.连接对角线相等的梯形各边中点所得的四边形是菱形 |
D.连接对角线互相垂直平分的四边形各边中点所得的四边形是正方形 |
已知四边形ABCD是任意四边形,若在下列条件中任取两个,使四边形ABCD是平行四边形,①AB∥CD;②BC∥AD,③AB=CD;④BC=AD,则符合条件的选择有( )
A.2组 | B.3组 | C.4组 | D.6组 |
已知四边形ABCD,有以下4个条件:①AB∥CD;②AB=DC;③AD∥BC;④AD=BC.从这4个条件中选2个,不能判定这个四边形是平行四边形的是( )
A.①② | B.①③ | C.①④ | D.②④ |
下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线PQ,使得PQ∥l.
作法:如图.
①在直线l上取两点A,B;
②以点P为圆心,AB为半径画弧,以点B为圆心,AP为半径画弧,两弧在直线l上方相交于点Q;
③作直线PQ.
根据小东设计的尺规作图过程
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:PA= ,AB= ,
∴四边形PABQ是平行四边形
∴PQ∥l( ).(填写推理的依据)
已知:直线l及直线l外一点P.
求作:直线PQ,使得PQ∥l.
作法:如图.
①在直线l上取两点A,B;
②以点P为圆心,AB为半径画弧,以点B为圆心,AP为半径画弧,两弧在直线l上方相交于点Q;
③作直线PQ.
根据小东设计的尺规作图过程
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:PA= ,AB= ,
∴四边形PABQ是平行四边形
∴PQ∥l( ).(填写推理的依据)

已知下列四个命题:①两组邻边相等的四边形是平行四边形;②有三个角是直角的四边形是平行四边形;③有三个角相等的四边形是平行四边形;④一条对角线是另一条对角线的垂直平分线的四边形是平行四边形.其中真命题的个数是( )
A.1 个 | B.2 个 | C.3 个 | D.4 个 |
不能判定四边形ABCD是平行四边形的题设是( )
A.AB∥CD,AB=CD | B.AB=CD,AD=BC |
C.AD=BC,∠A=∠C | D.AB∥CD,∠B=∠D |
顺次连接平面上A、B、C、D四点得到一个四边形,从①AB∥CD,②BC=AD,③∠A=∠C,④∠B=∠D四个条件中任取其中两个,不能得出“四边形ABCD是平行四边形”这一结论的是( )
A.①② | B.①③ | C.①④ | D.③④ |
有下列命题
①一组对边平行,一组对角相等的四边形是平行四边形.
②两组对角分别相等的四边形是平行四边形.
③一组对边相等,一组对角相等的四边形是平行四边形.
④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.
(1)上述四个命题中,是真命题的是 (填写序号);
(2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)
已知: .
求证: .
证明:
①一组对边平行,一组对角相等的四边形是平行四边形.
②两组对角分别相等的四边形是平行四边形.
③一组对边相等,一组对角相等的四边形是平行四边形.
④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.
(1)上述四个命题中,是真命题的是 (填写序号);
(2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)
已知: .
求证: .
证明:
