- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 平行四边形的性质
- 利用平行四边形的性质求解
- 利用平行四边形的性质证明
- 平行四边形性质的其他应用
- 平行四边形的判定
- 平行四边形的判定与性质综合
- 三角形中位线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在平行四边形ABCD中,点P是BC边上任意一点,连结PA,PD,若平行四边形ABCD的面积为12.8,则△PAD的面积为_____.
平行四边形ABCD的对角线交于点O,已知△OBC的周长为59厘米,且AD的长是28厘米,两对角线的差为14厘米,那么较长的一条对角线长是______厘米.
如图,□ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.

(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;
(2)求证:AF=CD+CF.

(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;
(2)求证:AF=CD+CF.
如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
在平面直角坐标系中,O为原点,四边形OABC的顶点A在
轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.
(1)若四边形OABC为矩形,如图1,
①求点B的坐标;
②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;
(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥
轴,与对角线AC、边OC分别交于点E、点


(1)若四边形OABC为矩形,如图1,
①求点B的坐标;
②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;
(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥

A.若B1E: B1F=1:3,点B1的横坐标为![]() ![]() |

已知,在平行四边形
中,
,
为
边的中点,连接
;
(1)如图1,若
,
,求平行四边形
的面积;
(2)如图2,连接
,将
沿
翻折得到
,延长
与
交于点
,求证:
.





(1)如图1,若



(2)如图2,连接








