- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- + 平行四边形
- 平行四边形的性质
- 平行四边形的判定
- 平行四边形的判定与性质综合
- 三角形中位线
- 特殊的平行四边形
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在□ABCD中,EF过对角线的交点,若AB=4,BC=7,OE=1.5,则四边形EFDC的周长是( )


A.14 | B.17 | C.10 | D.11 |
如图,△ABC中,M是AB的中点,DM∥AC交BC于D,延长DM到E,使ME=DM,连接AE、AD、BE.
(1)求证:四边形ADBE是平行四边形;
(2)求证:BD=CD.
(1)求证:四边形ADBE是平行四边形;
(2)求证:BD=CD.

如图,在Rt△ABC中,∠C=90∘,AC=6,BC=8,动点P从点A开始,沿边AC向点C以每秒1个单位长度的速度运动,动点D从点A开始,沿边AB向点B以每秒
个单位长度的速度运动,且恰好能始终保持连结两动点的直线PD⊥AC,动点Q从点C开始,沿边CB向点B以每秒2个单位长度的速度运动,连结PQ.点P,D,Q分别从点A,C同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t秒(t≥0).
(1)当t为何值时,四边形BQPD的面积为△ABC面积的
?
(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度。

(1)当t为何值时,四边形BQPD的面积为△ABC面积的

(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度。

如图,△ABC的中线BE,CF相交于点G,已知P,Q分别是BG,CG的中点.
(1)求证:四边形EFPQ是平行四边形;
(2)请判断BG与GE的数量关系,并证明.
(1)求证:四边形EFPQ是平行四边形;
(2)请判断BG与GE的数量关系,并证明.
