- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- + 平行四边形
- 平行四边形的性质
- 平行四边形的判定
- 平行四边形的判定与性质综合
- 三角形中位线
- 特殊的平行四边形
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知
周长为1,连接
三边的中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,依此类推,则第2020个三角形的周长是__________.



如图所示,以□ABCD的顶点A为圆心,AB为半径作圆,分别交AD,BC于点E,F,延长BA交⊙A于G.
(1)求证:弧GE=弧EF;
(2)若弧BF的度数为70°,求∠C的度数.
(1)求证:弧GE=弧EF;
(2)若弧BF的度数为70°,求∠C的度数.

已知四边形ABCD中,对角线BD被AC平分,那么再加上下述中的条件( )可以得到结论: “四边形ABCD是平行四边形”.
A.AB=CD | B.∠BAD=∠BCD | C.∠ABC=∠ADC | D.AC= BD |
如图,四边形ABCD为平行四边形,
的平分线AE交CD于点F交BC的延长线于点E.

(1)求证:
;
(2)连接BF、AC、DE,当
时,求证:四边形ACED是平行四边形.


(1)求证:

(2)连接BF、AC、DE,当

如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4),
(1)将△ABC各顶点的横坐标保持不变,纵坐标分别减5后得到△A1B1C1;
①请在图中画出△A1B1C1;
②求这个变换过程中线段AC所扫过的区域面积;
(2)将△ABC绕点(1,0)按逆时针方向旋转90°后得到的△A2B2C2,请在图中画出△A2B2C2,并分别写出△A2B2C2的顶点坐标.
(1)将△ABC各顶点的横坐标保持不变,纵坐标分别减5后得到△A1B1C1;
①请在图中画出△A1B1C1;
②求这个变换过程中线段AC所扫过的区域面积;
(2)将△ABC绕点(1,0)按逆时针方向旋转90°后得到的△A2B2C2,请在图中画出△A2B2C2,并分别写出△A2B2C2的顶点坐标.

如图,在矩形ABCD中,点E为AD的中点,不用圆规、量角器等工具,只用无刻度的直尺作图.
(1)如图1,在BC上找点F,使点F是BC的中点;
(2)如图2,连接AC,在AC上取两点P,Q,使P,Q是AC的三等分点.
(1)如图1,在BC上找点F,使点F是BC的中点;
(2)如图2,连接AC,在AC上取两点P,Q,使P,Q是AC的三等分点.
