- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- + 平行四边形
- 平行四边形的性质
- 平行四边形的判定
- 平行四边形的判定与性质综合
- 三角形中位线
- 特殊的平行四边形
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
我们知道,两组对边分别平行的四边形叫做平行四边形。平行四边形的内角和、外角和都等于360°,根据三角形的学习经验,请你再写出平行四边形的两条性质;并证明其中一条性质
(1)______________________________________________
(2)________________________________________________
(1)______________________________________________
(2)________________________________________________

在一堂数学实践课上,赵老师给出了下列问题:
(提出问题)
(1)如图1,在△ABC中,E是BC的中点,P是AE的中点,就称CP是△ABC的“双中线”,∠ACB=90°,AC=3,AB=5.则CP= .
(探究规律)
(2)在图2中,E是正方形ABCD一边上的中点,P是BE上的中点,则称AP是正方形ABCD的“双中线”,若AB=4.则AP的长为 (按图示辅助线求解);
(3)在图3中,AP是矩形ABCD的“双中线”,若AB=4,BC=6,请仿照(2)中的方法求出AP的长,并说明理由;
(拓展应用)
(4)在图4中,AP是平行四边形ABCD的“双中线”,若AB=4,BC=10,∠BAD=120°.求出△ABP的周长,并说明理由?
(提出问题)
(1)如图1,在△ABC中,E是BC的中点,P是AE的中点,就称CP是△ABC的“双中线”,∠ACB=90°,AC=3,AB=5.则CP= .
(探究规律)
(2)在图2中,E是正方形ABCD一边上的中点,P是BE上的中点,则称AP是正方形ABCD的“双中线”,若AB=4.则AP的长为 (按图示辅助线求解);
(3)在图3中,AP是矩形ABCD的“双中线”,若AB=4,BC=6,请仿照(2)中的方法求出AP的长,并说明理由;
(拓展应用)
(4)在图4中,AP是平行四边形ABCD的“双中线”,若AB=4,BC=10,∠BAD=120°.求出△ABP的周长,并说明理由?

已知:如图,在矩形
中,
是边
上一点,过点
作对角线
的平行线,交
于
,交
和
的延长线于点
,
.

(1)求证:
;
(2)若
,则四边形
是什么特殊四边形?并证明你的结论.












(1)求证:

(2)若


如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8米,∠A=30°,则DE等于( )


A.4米 | B.3米 | C.2米 | D.1米 |
如图,△ABC是边长为10的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合).

(Ⅰ)如图1,若点Q是BC边上一动点,与点P同时以相同的速度由C向B运动(与C、B不重合).求证:BP=AQ;
(Ⅱ)如图2,若Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D,在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.

(Ⅰ)如图1,若点Q是BC边上一动点,与点P同时以相同的速度由C向B运动(与C、B不重合).求证:BP=AQ;
(Ⅱ)如图2,若Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D,在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.
下列命题中的真命题是( )
A.有一组对边平行的四边形是平行四边形 |
B.有一个角是直角的四边形是矩形 |
C.对角线互相垂直平分的四边形是正方形 |
D.有一组邻边相等的平行四边形是菱形 |