刷题首页
题库
初中数学
题干
在一堂数学实践课上,赵老师给出了下列问题:
(提出问题)
(1)如图1,在△
ABC
中,
E
是
BC
的中点,
P
是
AE
的中点,就称
CP
是△
ABC
的“双中线”,∠
ACB
=90°,
AC
=3,
AB
=5.则
CP
=
.
(探究规律)
(2)在图2中,
E
是正方形
ABCD
一边上的中点,
P
是
BE
上的中点,则称
AP
是正方形
ABCD
的“双中线”,若
AB
=4.则
AP
的长为
(按图示辅助线求解);
(3)在图3中,
AP
是矩形
ABCD
的“双中线”,若
AB
=4,
BC
=6,请仿照(2)中的方法求出
AP
的长,并说明理由;
(拓展应用)
(4)在图4中,
AP
是平行四边形
ABCD
的“双中线”,若
AB
=4,
BC
=10,∠
BAD
=120°.求出△
ABP
的周长,并说明理由?
上一题
下一题
0.99难度 解答题 更新时间:2019-12-04 01:38:58
答案(点此获取答案解析)
同类题1
已知:如图,在四边形ABCD中,E、F是四边形ABCD的对角线AC上的两点,且AF=CE,DF=BE,DF∥B
A.
(1)求证:△CDF≌△ABE;
(2)求证:四边形ABCD是平行四边形.
同类题2
如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接B
A.
(1)求证:四边形AFBD是平行四边形;
(2)将下列命题填写完整,并使命题成立(图中不再添加其它的点和线):
①当△ABC满足条件AB=AC时,四边形AFBD是
形;
② 当△ABC满足条件
时,四边形AFBD是正方形.
同类题3
如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.
同类题4
如图,等腰△ABC中,已知AC=BC=2
, AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点
A.
(1)求证:四边形BCFE是平行四边形;
(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;
(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.
同类题5
如图,已知平行四边形
ABCD
延长
BA
到点
E
,延长
DC
到点
E
,使得
AE
=
CF
,连结
EF
,分别交
AD
、
BC
于点
M
、
N
,连结
BM
,
DN
.
(1)求证:
AM
=
CN
;
(2)连结
DE
,若
BE
=
DE
,则四边形
BMDN
是什么特殊的四边形?并说明理由.
相关知识点
图形的性质
四边形
平行四边形
平行四边形的判定与性质综合
利用平行四边形性质和判定证明
根据矩形的性质与判定求线段长