如图,在△ABC中,AD⊥BC于点D,点F为AB上一点,连接CF,过点B作BE⊥BC交CF的延长线于点E,交AD于点H,且∠1=∠2

(1)求证:AB=AC;
(2)若∠1=22°,∠AFC=110°,求∠BCE的度数.

(1)求证:AB=AC;
(2)若∠1=22°,∠AFC=110°,求∠BCE的度数.
如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40°.

⑴求∠NMB的大小;
⑵若将图中的∠A的度数改为70°,其余条件不变,则∠NMB= ;
⑶你发现有什么样的规律?若将∠A改为钝角,对这个问题规律性的认识是否需要加以修改?

⑴求∠NMB的大小;
⑵若将图中的∠A的度数改为70°,其余条件不变,则∠NMB= ;
⑶你发现有什么样的规律?若将∠A改为钝角,对这个问题规律性的认识是否需要加以修改?
已知,如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下列结论:①AC平分∠PAD;②∠APO=∠DCO;③△OPC是等边三角形;④AC=AO+AP;其中正确的序号是( )


A.①③④ | B.②③ | C.①②④ | D.①③ |
具备下列条件的三角形为等腰三角形的是( )
A.有两个角分别为20°,120° |
B.有两个角分别为40°,80° |
C.有两个角分别为30°,60° |
D.有两个角分别为50°,80° |