- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- 三角形全等的判定
- + 角平分线的性质与判定
- 角平分线的性质定理
- 角平分线的判定定理
- 角平分线性质的实际应用
- 尺规作图——作角平分线
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB于点E,若△BDE的周长是5 cm,则AB的长为__________.

如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=24,DE=4,AB=7,则AC长是( )


A.3 | B.4 | C.6 | D.5 |
如图,在平面直角坐标系中,点
坐标为
,点
是
轴正半轴上一点,且
,点
是
轴上位于点
右侧的一个动点,设点
的坐标为
.

(1)点
的坐标为( );
(2)当
是等腰三角形时,求
点的坐标;
(3)如图2,过点
作
交线段
于点
,连接
,若点
关于直线
的对称点为
,当点
恰好落在直线
上时,
.(直接写出答案)











(1)点

(2)当


(3)如图2,过点











如图,在△ABC中,AD⊥BC,CE平分∠ACB,AD交CE于点F,已知△AFC的面积为5,FD=2,则AC长是( )


A.2.5 | B.4 | C.5 | D.6 |
已知:△ABC是三边都不相等的三角形,点O和点P是这个三角形内部两点.
(1)如图①,如果点P是这个三角形三个内角平分线的交点,那么∠BPC和∠BAC有怎样的数量关系?请说明理由;
(2)如图②,如果点O是这个三角形三边垂直平分线的交点,那么∠BOC和∠BAC有怎样的数量关系?请说明理由;
(3)如图③,如果点P(三角形三个内角平分线的交点),点O(三角形三边垂直平分线的交点)同时在不等边△ABC的内部,那么∠BPC和∠BOC有怎样的数量关系?请直接回答.
(1)如图①,如果点P是这个三角形三个内角平分线的交点,那么∠BPC和∠BAC有怎样的数量关系?请说明理由;
(2)如图②,如果点O是这个三角形三边垂直平分线的交点,那么∠BOC和∠BAC有怎样的数量关系?请说明理由;
(3)如图③,如果点P(三角形三个内角平分线的交点),点O(三角形三边垂直平分线的交点)同时在不等边△ABC的内部,那么∠BPC和∠BOC有怎样的数量关系?请直接回答.
