- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 三角形的内角和定理
- 三角形内角和定理的证明
- 与平行线有关的三角形内角和问题
- 与角平分线有关的三角形内角和问题
- 三角形折叠中的角度问题
- 三角形内角和定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC 中,点 D,E 分别在∠ABC 和∠ACB 的平分线上,连接 BD,DE,EC,若∠D+∠E=295°,则∠A 是( )


A.65° | B.60° | C.55° | D.50° |
探索归纳:
(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于
(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=
(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是
(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.
(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于
A.90° | B.135° | C.270° | D.315° |
(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是
(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.

如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )


A.∠A=∠1+∠2 | B.2∠A=∠1+∠2 |
C.3∠A=2∠1+∠2 | D.3∠A=2(∠1+∠2) |
如图,CD是△ABC的边AB上的中线,且CD=
AB,则下列结论错误的是( )



A.AD=BD | B.∠A=30° | C.∠ACB=90° | D.△ABC是直角三角形 |
如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )


A.60° | B.65° | C.55° | D.50° |
如图,在四边形ABCD中,∠ADC +∠BCD =220°, E、F分别是AC、BD的中点,P是AB边上的中点,则∠EPF=________ .
